224 research outputs found

    A simple person's approach to understanding the contagion condition for spreading processes on generalized random networks

    Full text link
    We present derivations of the contagion condition for a range of spreading mechanisms on families of generalized random networks and bipartite random networks. We show how the contagion condition can be broken into three elements, two structural in nature, and the third a meshing of the contagion process and the network. The contagion conditions we obtain reflect the spreading dynamics in a clear, interpretable way. For threshold contagion, we discuss results for all-to-all and random network versions of the model, and draw connections between them.Comment: 10 pages, 9 figures; chapter to appear in "Spreading Dynamics in Social Systems"; Eds. Sune Lehmann and Yong-Yeol Ahn, Springer Natur

    Packing-limited growth of irregular objects

    Get PDF
    We study growth limited by packing for irregular objects in two dimensions. We generate packings by seeding objects randomly in time and space and allowing each object to grow until it collides with another object. The objects we consider allow us to investigate the separate effects of anisotropy and non-unit aspect ratio. By means of a connection to the decay of pore-space volume, we measure power law exponents for the object size distribution. We carry out a scaling analysis, showing that it provides an upper bound for the size distribution exponent. We find that while the details of the growth mechanism are irrelevant, the exponent is strongly shape dependent. Potential applications lie in ecological and biological environments where sessile organisms compete for limited space as they grow.Comment: 6 pages, 4 figures, 1 table, revtex

    Packing-Limited Growth

    Get PDF
    We consider growing spheres seeded by random injection in time and space. Growth stops when two spheres meet leading eventually to a jammed state. We study the statistics of growth limited by packing theoretically in d dimensions and via simulation in d=2, 3, and 4. We show how a broad class of such models exhibit distributions of sphere radii with a universal exponent. We construct a scaling theory that relates the fractal structure of these models to the decay of their pore space, a theory that we confirm via numerical simulations. The scaling theory also predicts an upper bound for the universal exponent and is in exact agreement with numerical results for d=4.Comment: 6 pages, 5 figures, 4 tables, revtex4 to appear in Phys. Rev. E, May 200

    Direct, physically-motivated derivation of the contagion condition for spreading processes on generalized random networks

    Get PDF
    For a broad range single-seed contagion processes acting on generalized random networks, we derive a unifying analytic expression for the possibility of global spreading events in a straightforward, physically intuitive fashion. Our reasoning lays bare a direct mechanical understanding of an archetypal spreading phenomena that is not evident in circuitous extant mathematical approaches.Comment: 4 pages, 1 figure, 1 tabl
    • …
    corecore